Zulassungsstelle für Bauprodukte und Bauarten
Bautechnisches Prüfamt
Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung
ETA-17/0247
vom 21. Juni 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Deutsches Institut für Bautechnik

Handelsname des Bauprodukts
"Baustroh"

Wärmedämmstoff aus Strohballen

Produktfamilie, zu der das Bauprodukt gehört

BauStroh GmbH
Artilleriestraße 6
27283 Verden
DEUTSCHLAND

Hersteller

BauStroh GmbH
Artilleriestraße 6
27283 Verden
DEUTSCHLAND

Herstellungsbetrieb

7 Seiten, davon 2 Anhänge, die fester Bestandteil dieser Bewertung sind.

Diese Europäische Technische Bewertung enthält

Europäisches Bewertungsdokument (EAD) 040146-00-1201, ausgestellt.

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von
Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrerAmtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Originalvollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewer-
tungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.
Besonderer Teil

1 Technische Beschreibung des Produkts

Die Europäische Technische Bewertung gilt für den Wärmendämmerrost "Baustroh" aus gepresstem Getreidestroh mit ausgerichteten Halmen.

Die Herstellung des Wärmendämmstoffes als Rohballen erfolgt zunächst durch landwirtschaftliche Ballenpressen direkt bei der Getreideernte auf dem Acker und anschließende Verarbeitung der Rohballen an der Anwendungsstelle durch geschultes Fachpersonal.

Der Wärmendämmerrost enthält keine im Rahmen des Herstellungsprozesses beigefügten Zusätze.

Die Europäische Technische Bewertung wurde für die Produkte auf Grundlage abgestimmter Daten und Informationen ausgestellt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des bewerteten Produkts dienen. Die Europäische Technische Bewertung gilt nur für die Produkte, die den hinterlegten Daten und Informationen entsprechen.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Der Wärmendämmerrost wird in eine tragende oder nichttragende Außenwand-Konstruktion oder zwischen Dachsparren mit einem Unterstützungsabstand im lichten Zwischenmaß von weniger als einem Meter eingebaut.

Der Wärmendämmerrost ist nicht druckbelastbar und dient nicht der Standsicherheit einer baulichen Anlage oder deren Teile.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

Hinsichtlich Probennahme, Vorbehandlung und Durchführung der Prüfungen gelten die Festlegungen des EAD Nr. 040146-00-1201 "Wärmendämmung aus Strohballen für Gebäude".

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Nicht zutreffend.

3.2 Brandschutz (BWR 2)

<table>
<thead>
<tr>
<th>Wesentliches Merkmal</th>
<th>Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandverhalten</td>
<td>Klasse E</td>
</tr>
</tbody>
</table>
3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

<table>
<thead>
<tr>
<th>Wesentliches Merkmal</th>
<th>Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widerstandsfähigkeit gegenüber Pilzen</td>
<td>Leistung nicht bewertet.</td>
</tr>
<tr>
<td>Prüfung gemäß EAD, Anhang A</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Nicht zutreffend.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

<table>
<thead>
<tr>
<th>Wesentliches Merkmal</th>
<th>Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeleitfähigkeit</td>
<td></td>
</tr>
<tr>
<td>Prüfung nach EN 12667:2001 (vgl. EAD Anhang B) senkrecht zur Halmrichtung</td>
<td></td>
</tr>
<tr>
<td>(Dickenrichtung entsprechend Ausrichtung der Halme beim Einbau)</td>
<td></td>
</tr>
<tr>
<td>Nennwert der Wärmeleitfähigkeit (vgl. EAD Anhang B)</td>
<td></td>
</tr>
<tr>
<td>massebezogener Feuchtegehalt (bei 23 °C/80 % rel. Luftfeuchte)</td>
<td></td>
</tr>
<tr>
<td>massebezogener Feuchteumrechnungskoeffizient</td>
<td></td>
</tr>
<tr>
<td>Umrechnungsfaktor für den Feuchtegehalt</td>
<td></td>
</tr>
<tr>
<td>(\lambda_{10,\text{dry}} = 0,043 \text{ W/(m}\cdot\text{K})^{a})</td>
<td></td>
</tr>
<tr>
<td>(\lambda_{23/50} = 0,048 \text{ W/(m}\cdot\text{K})^{b})</td>
<td></td>
</tr>
<tr>
<td>(u = 11,8 %)</td>
<td></td>
</tr>
<tr>
<td>(f_{u_{(\text{dry} - 23/80)}} = 0,823)</td>
<td></td>
</tr>
<tr>
<td>(F_{m_{(\text{dry} - 23/80)}} = 1,10)</td>
<td></td>
</tr>
<tr>
<td>Wasserdampf-Diffusionswiderstandsgrad</td>
<td></td>
</tr>
<tr>
<td>Prüfung nach EN 12086:2013, Klimabedingungen A</td>
<td></td>
</tr>
<tr>
<td>(\mu = 2,0)</td>
<td></td>
</tr>
<tr>
<td>Längenbezogener Strömungswiderstand</td>
<td></td>
</tr>
<tr>
<td>Hygroskopische Sorptionseigenschaften</td>
<td></td>
</tr>
<tr>
<td>Prüfung nach EN ISO 12571:2013</td>
<td></td>
</tr>
<tr>
<td>- Sorptionskurve</td>
<td></td>
</tr>
<tr>
<td>- Desorptionskurve</td>
<td></td>
</tr>
<tr>
<td>Feuchteaufnahme (\leq 18 \text{ Masse-}%) bei 23 °C/80 % rel. Feuchte</td>
<td></td>
</tr>
<tr>
<td>Leistung nicht bewertet</td>
<td></td>
</tr>
<tr>
<td>Wasseraufnahme bei kurzzeitigem teilweisem Eintauchen</td>
<td></td>
</tr>
<tr>
<td>Leistung nicht bewertet</td>
<td></td>
</tr>
<tr>
<td>Nennlänge</td>
<td></td>
</tr>
<tr>
<td>Prüfung in Anlehnung an EN 822:2013</td>
<td>500 bis 3000 mm</td>
</tr>
<tr>
<td>Nennbreite</td>
<td></td>
</tr>
<tr>
<td>Prüfung in Anlehnung an EN 822:2013</td>
<td>300 bis 900 mm</td>
</tr>
<tr>
<td>Nenndicke (quer zu den Halmen)</td>
<td></td>
</tr>
<tr>
<td>Prüfung in Anlehnung an EN 823:2013 (mit einer Last von 1000 Pa)</td>
<td></td>
</tr>
<tr>
<td>zulässige Abweichung</td>
<td>200 bis 700 mm</td>
</tr>
<tr>
<td></td>
<td>± 20 mm</td>
</tr>
</tbody>
</table>
3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)
Nicht zutreffend.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungs dokument EAD Nr. 040146-00-1201 "Wärmedämmung aus Strohballen für Gebäude" gilt folgende Rechtsgrundlage:
Entscheidung der Kommission 1999/91/EC.
Folgendes System ist anzuwenden: System 3
Zusätzlich gilt in Bezug auf das Brandverhalten für Produkte nach diesem Europäischen Bewertungs dokument folgende europäische Rechtsgrundlage:
Entscheidung der Kommission 2001/596/EC.
Folgende Systeme sind anzuwenden: System 1, 3 oder 4

5 Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungs dokument
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 21. Juni 2017 vom Deutschen Institut für Bautechnik

Prof. Gunter Hoppe
Abteilungsleiter
ANHANG A

Die im Abschnitt 3 angegebenen Leistungen für den Wärmedämmstoff gelten, wenn hinsichtlich Einbau und Verwendung Folgendes beachtet wird:

1) Der Wärmedämmstoff wird nur in Konstruktionen eingebaut, in denen er vor Niederschlag, Bewitterung und Feuchtigkeit geschützt ist.

2) Der Wärmedämmstoff wird trocken eingebaut (Feuchtegehalt $u \leq 18 \text{ Masse-\%}$).

3) Die Einbaufüchste des Konstruktionsschlosses beträgt zum Zeitpunkt des raumseitigen Schließens der Bauteile $u \leq 20 \text{ Masse-\%}$.

4) Bei den Konstruktionssaumbauten ist die innere raumseitige Bekleidung dauerhaft fugendicht ausgebildet, so dass keine strömende Luft von innen nach außen in die Konstruktion gelangt.

5) Der Wärmedämmstoff ist so eingebaut, dass die Halme senkrecht zum Wärmestrom (quer zur Dickenrichtung) ausgerichtet sind.

6) Sämtliche Bauteile sind so geplant und ausgeführt, dass kein Schimmelpilzwachstum im Dämmstoff auftreten kann.

7) Die Eignung der Konstruktion hinsichtlich Tauwasserschutz und Schimmelpilzresistenz wird durch Simulationsberechnungen (z. B. auf Basis von EN 15026) für den konkreten Bauteilaufbau und die Klimabedingungen am Einbauort nachgewiesen. Für die Klimabedingungen in Deutschland kann von einer Eignung ausgegangen werden, wenn die Aufbauten nach Anhang B eingehalten werden.

8) Die Rohdichte der eingebauten Wärmedämmsschicht wird vom Verarbeiter ermittelt und in einer Bescheinigung angegeben, sie entspricht der Rohdichte gemäß Abschnitt 3.

9) Die Dicke der eingebauten Wärmedämmsschicht wird vom Verarbeiter ermittelt und in einer Bescheinigung angegeben, sie entspricht mindestens der geforderten Nenndicke (Planungsdicke).
ANHANG B

Feuchtetechnisch zulässige Schichteneigenschaften von Konstruktionen mit Baustroh als Wärmedämmung in Deutschland

a) Außenwandkonstruktionen mit vorgesetztem, hinterlüftetem Wetterschutz

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Strohdicke [m]</th>
<th>$s_{d,l}$ [m]</th>
<th>R_i [m²·K/W]</th>
<th>$s_{d,e}$ [m]</th>
<th>R_e [m²·K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 1,00</td>
<td>≥ 0,10</td>
<td>≤ 0,35</td>
<td>≤ 0,50</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>≤ 0,48</td>
<td>≥ 0,76</td>
<td>≤ 3,14</td>
<td>≤ 0,50</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>≤ 0,48</td>
<td>≥ 0,10</td>
<td>≤ 0,35</td>
<td>≤ 1,00</td>
<td>≥ 1,00</td>
</tr>
<tr>
<td>4</td>
<td>≤ 0,48</td>
<td>≥ 2,00</td>
<td>≤ 0,35</td>
<td>≤ 1,50</td>
<td>≥ 0,70</td>
</tr>
<tr>
<td>5</td>
<td>≤ 0,48</td>
<td>≥ 0,10</td>
<td>≤ 0,35</td>
<td>≤ 1,50</td>
<td>≥ 1,43</td>
</tr>
<tr>
<td>6</td>
<td>≤ 0,48</td>
<td>≥ 0,10</td>
<td>≤ 0,35</td>
<td>≤ 2,00</td>
<td>≥ 1,90</td>
</tr>
</tbody>
</table>

b) Frei bewitterte, verputzte Außenwandkonstruktionen
Putz gemäß EN 998-1 mit wasserabweisender Beschichtung gemäß EN 1062-1 in W_3 und V_1

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Strohdicke [m]</th>
<th>$s_{d,l}$ [m]</th>
<th>R_i [m²·K/W]</th>
<th>$s_{d,e}$ [m]</th>
<th>R_e [m²·K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 0,70</td>
<td>≥ 0,10</td>
<td>≤ 0,35</td>
<td>≤ 0,50</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>≤ 0,48</td>
<td>≥ 0,76</td>
<td>≤ 3,14</td>
<td>≤ 0,50</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>≤ 0,48</td>
<td>≥ 3,00</td>
<td>≤ 0,35</td>
<td>≤ 1,50</td>
<td>≥ 0,30</td>
</tr>
</tbody>
</table>

c) Dachkonstruktionen mit belüfteter Dachdeckung

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Strohdicke [m]</th>
<th>$s_{d,l}$ [m]</th>
<th>R_i [m²·K/W]</th>
<th>$s_{d,e}$ [m]</th>
<th>R_e [m²·K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 0,48</td>
<td>≥ 2,00</td>
<td>≤ 0,35</td>
<td>≤ 0,50</td>
<td>≥ 0,14</td>
</tr>
<tr>
<td>2</td>
<td>≤ 0,36</td>
<td>≥ $s_{d,e}$</td>
<td>≤ 0,35</td>
<td>≤ 3,00</td>
<td>≥ 0,14</td>
</tr>
</tbody>
</table>

Hinweis:
Zeile 1 charakterisiert die jeweils zulässige Grundvariante. Weitere Zeilen: mögliche Varianten mit geänderten Bauteileigenschaften (grau hinterlegt), die in der Folge zu ändernde Schichteneigenschaften erfordern (fett gedruckte Werte).

Symbole, Indizes:
$s_{d,e}$ diffusionsäquivalente Luftschichtdicke für die äußeren Schichten / Bekleidungen
$s_{d,l}$ diffusionsäquivalente Luftschichtdicke für die inneren Schichten / Bekleidungen
R_i Wärmedurchlasswiderstandes für die inneren Schichten / Bekleidungen
R_e Wärmedurchlasswiderstandes für die äußeren Schichten / Bekleidungen
W_3 Wasserdurchlässigkeit der nach EN 1062-1 klassifizierten und nach EN 1062-3 geprüften Beschichtung: $W_3 ≤ 0,1$ kg/(m²·h); Index 24 = Prüfdauer 24 h
V_1 Wasserdampf-Diffusionsstromdichte der nach EN 1062-1 klassifizierten und nach EN 1062-3 geprüften Beschichtung: $V_1 > 150$ g/(m²·d) mit $s_d < 0,14$ m